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The perturbation of pre-existing surface gravity waves caused by the presence 
of an internal wave was studied both experimentally and analytically. An exten- 
sive series of experiments was performed, and quantitative results were obtained 
for the one-dimensional monochromatic interaction of internal waves and surface 
gravity waves. Internal wave-induced surface slope, amplitude and wavenumber 
modulations were measured for a wide range of interaction conditions. A comple- 
mentary theoretical analysis, based on the conservation approach of Whitham 
(1962) and Longuet-Higgins & Stewart (1960,1961), was performed and a closed 
form solution obtained for the one-dimensional wave interaction, Both the theory 
and the experiment demonstrate that the effect increases with interaction 
distance. The maximum interaction effect is found to occur when the phase speed 
of the internal wave and the group velocity of the surface wave are matched. The 
phase of the internal wave at  which maximum surface-wave modulation occurs 
is found to be a sensitive and continuous function of the relative wave speeds. 
The experimental data are in good agreement with the present theoretical 
analysis. 

1. Introduction 
The perturbation to oceanic surface waves caused by the presence of aninternal 

wave has been a subject of oceanographic interest for many years. The observa- 
tions by Ewing (1950), LaFond (1962) and Gargett & Hughes (1972) in coastal 
waters have presented ample evidence for the existence of this interaction. 
Previous studies have not, however, led to quantitative conclusions. To isolate, 
identify and control the influence of physical parameters on the interaction, we 
examined an idealized internal-wave/surface-wave system in the laboratory. 
The interaction of a linear, one-dimensional monochromatic surface gravity 
wave train with an independently generated monochromatic internal-wave 
train, propagating in the same direction, was studied in a two-fluid tank, 
Measurements of surface-wave amplitude and slope and internal-wave ampli- 
tude were used to determine quantitatively interaction-induced surface slope, 

t Present address: Techmate, Inc., Torrance, California. 
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amplitude and wavenumber modulations, and their dependence on relative 
wave speed, interaction distance and internal-wave characteristics. 

Theoretical investigations using the radiation stress concepts derived by 
Longuet-Higgins & Stewart (1960, 1961) have also been reported by various 
authors (e.g. Gargett & Hughes; Phillips 1971). However, these studies were 
based on a steady-state analysis, which assumes the interaction phenomenon to 
be time-independent in a frame moving with the internal-wave phase speed. The 
non-steady interaction problem was first addressed analytically by Hartle & 
Zachariasen ( 1968). Using transform techniques on the linearized governing 
equations, the modulation of the surface waves caused by the presence of an 
internal-wave field was shown to increase with time or interaction distance. To 
provide insight into this type of interaction, we studied an idealized internal- 
wave/surface-wave system analytically, to complement the detailed laboratory 
experiments. The analytical approach follows the theories of Longuet-Higgins & 
Stewart, and Whitham (1962), which have been successfully applied to steady- 
state problems. 

2. Experiment 
2.1. Apparatus 

Figure 1 shows a schematic, illustrating the laboratory experiment. A simple two- 
fluid system, consisting of a layer of water lying above a heavier fluid, was used to 
establish the internal gravity waves, with both surface and internal waves 
generated at an initial station, x = 0. The experiment was performed in a 
3 x 3 x 40 ft tank, designed to generate independently both surface waves and 
internal gravity waves. The tank was filled with pure water over a 3 in. depth of 
a denser mixture of freon and kerosene. Wave makers were located a t  one end 
of the tank to generate surface and internal waves, and shallow angle wave 
absorbers were installed at the opposite end to attenuate wave reflexions. 
A carriage, which was rail-mounted over the tank and could be moved to any 
location along the full tank length, was used as an instrumentation platform. To 
keep the working fluids in the facility clean, and to ensure that the dynamics of 
the surface waves are not subject to effects of surface films, the facility was 
provided with two 5p filtering systems, including a surface skimmer and an 
ultra-violet sterilizer for the distilled water. The skimmer and plumbing inlets 
mere removed and the filter systems shut down during experiments, so that these 
systems in no way interfered with fluid motions during wave interaction 
measurements. 

The wave-generating mechanisms are shown schematically in figure 2. Internal 
waves were generated by means of a piston moving in a channel, as shown in the 
figure. Since the interaction distance is an important wave interaction parameter, 
the system was designed to create as ' clean ' an internal wave as possible from the 
initial station. For shallow interfacial waves the lower velocity field was nearly 
constant, and was well approximated at  x = 0 by the piston motion in the 
constant area channel. For the ideal case, the volume fluxes above and below the 
interface are equal and opposite. This overall conservation was satisfied by 
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enclosing the upper surface of the internal-wave maker as shown in figure 2. The 
velooity distribution in the upper fluid was approximated by a rigid flap, also 
shown in figure 2, hinged 18 in. above the interface. 

The phase velocity and wavelength of the internal wave could be varied 
independently. This was accomplished by simultaneously varying the specific 
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FIGURE 3. Schematic diagram of wave slope measuring device. 

gravity of the freon-kerosene mixture and the frequency of the internal-wave 
generation (using a variable speed motor). Surface waves were generated by a 
rigid flap hinged 3 in. below the air-water surface. The frequency, and hence the 
propagation velocity, of the surface waves could be varied independently of the 
internal-wave characteristics. 

The structure that supported the wave-generating motors was isolated from 
the tank. Mechanical contact between the wave generators and the tank was also 
carefully avoided. At the opposite end of the tank were shallow angle wave 
absorbers. A simple impermeable wave absorber was used for surface waves, and 
was very effective (Areilected/Ainciaent < 5 %, where A is the wave amplitude). 
An impermeable absorber surface with a 3in. depth of porous brass pads was 
used to reduce internal-wave reflexions to levels (Areilected/Aincident 6 7 %) 
acceptable for experimentation under steady-state operating conditions in the 
facility. 

The data presented here are measurements obtained from two resistance wave- 
amplitude gauges, one for the internal wave and one for the surface wave, and an 
optical device developed to measure the surface-wave slope directly. The following 
summarizes the important characteristics of these instruments. The operation 
and calibration of the instruments is described in detail, including calibration 
data, in Lewis & Lake (1973). 

The device developed for the slope measurement is shown schematically in 
figure 3. The basic principle is quite simple, and relies on specular reflexion from 
the local water surface. A lens system focuses on a spot 1 mm x 1 cm (the smaller 
dimension is in the direction of wave propagation), and feeds into a photo- 
multiplier tube light whose intensity depends on the slope of the surface. Detailed 
calibrations were performed, which showed that the device has linear response to 
surface slope over a range of k 14". 

Although 'in place' calibration checks could be performed with the slope 
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gauge mounted on the wave tank instrument carriage (as described in 8 2.2), the 
detailed calibrations were performed with the gauge mounted on a specially 
designed calibration apparatus. The calibration apparatus was designed to repro- 
duce exactly the carriage-mounted configuration of the gauge with respect to its 
reflecting surface. Three interchangeable reflecting surface control mechanisms 
were provided to permit separate calibrations for gauge sensitivity to vertical dis- 
placement, slope and curvature. This was accomplished by vertically displacing, 
inclining or bending reflecting surface plates, to produce accurately controlled 
displacements, slopes or curvatures, respectively. For slope and curvature cali- 
brations, the point on the reflecting surface a t  which the optics were focused was 
at  fixed height and, in the case of curvature, at the point of zero surface slope, to 
ensure that each calibration isolates the specific quantity of interest. Calibrations 
for gauge response to vertical displacements over a 5 0.2in. range show linear 
response to displacements with sensitivity corresponding to 1 % in measured 
slope for the surface waves in these experiments. Calibrations for response to 
curvature over a & 0.1 in.-l range (wave curvature in these experiments is 
0.02-0.3 in.-*) show that the optical gauge has no measurable response to surface 
curvature. To perform such calibrations, it was necessary to focus the gauge 
optics on the point of zero slope on the reflecting plate. When the focal point was 
focused on a point slightly offset from the point of zero slope, the gauge output 
signal showed an apparent variation with changes in plate curvature. I n  such a 
case, accurate measurement of the focal point offset distance from the zero slope 
point and calculation of the slope of the reflecting plate a t  the actual focal point 
showed that such gauge response could always be fully accounted for by sensi- 
tivity to slope alone. Furthermore, by locating carefully the focal point a t  the 
point of zero slope, it was always possible to perform curvature ' calibrations ' in 
which the gauge output showed no measurable variation while the reflecting 
surface plate was continuously deformed over the full range of surface curvature. 
Since gauge output voltage changes of one part in one thousand were easily 
measurable, the calibration results put an upper bound on possible curvature- 
induced contributions to the optical gauge output signal of less than 1 yo in slope 
for all surface waves used in the experiments. 

Periodic calibrations of the optical gauge, on the calibration device ( & 14" 
range?) and on the instrument carriage ( & 2.5' range), demonstrated that the 
gauge response to slope was always linear. In  addition, the calibrations showed 
that setting the light source intensity so that the zero-slope (d.c.) output voltage 
level of the photomultiplier tube was maintained constant resulted in a repro- 
ducibly constant sensitivity to slope. Constant sensitivity was not a critical 
requirement, since the primary measured quantity was fractional change in 
slope, which required only linearity. Because constant sensitivity could be 
maintained, however, absolute wave slopes, as well as fractional changes in 
wave slopes, were measured for the entire series of experiments. As used in the 

6 . 2 O  range of 
surface slope. More recent calibrations, using a slightly modified codiguration, showed 
the gauge to have a useful linear range of t 1 4 O ,  although linearity over the wider range is 
not as good as for the & 6.2" range. 

t Detailed calibrations for these experiments were performed over a 
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experiments, the gauge had 34.1 mV degree-1 sensitivity to slope, with an r.m.s. 
average deviation of all calibration data points from the least-squares linear fit to 
the data of only 2.8 mV. 

Calibrations of the resistance wave gauges before and after series of measure- 
ments showed that, during each series, linearity and sensitivity of the gauges 
remained constant within the resolution of the calibration data. Over periods of 
days or weeks, however, sensitivity changes of as much as 10 yo might occur as a 
result of the corrosive effects of the liquids on the wires, and periodic cleaning of 
the wires with nitric acid to remove corrosion. For this reason, the resistance 
gauges were recalibrated for each series of experiments. All calibrations were 
performed with the gauges mounted on the instrumentation carriage and vertical 
displacements measured to within 0.001 in., as described in $2.2.  The internal 
gauge sensitivities were typically 6 V in.-l with linearity over a & 0.5 in. range. 
Surface gauge sensitivities were typically 16 V in.-l with linearity over a 
- + 0.2 in. range. The typical r.m.5. average deviation of the calibration data points 
from the least-squares linear fit to each set of calibration data was only 0.04V for 
the internal gauge, and 0.06 V for the surface gauge. 

2.2. Procedure 

The experiments were done to study interactions of monochromatic surface and 
internal waves. Power spectral densities of the individual surface and internal 
wave conditions used in the experiments were obtained, to assess the extent to 
which the waves generated in the facility were actually monochromatic. Power 
spectra, obtained from the tape recordings of the internal resistance gauge for 
steady operation of the internal wave maker (with no surface waves present), 
showed that the internal waves used were reasonably monochromatic, with 
second harmonic energy density less than the primary frequency energy density 
by at least - 16db in all cases, and more typically by - 25 db. The power 
spectrum of each experimental surface-wave condition (with no internal waves 
present) was obtained from tape recordings of the outputs of both the surface 
resistance gauge and the surface-wave slope gauge. The results showed that all 
surface waves used in the experiments were closely monochromatic, with energy 
density in second harmonics below energy density in primary frequencies by 
- 23 to - 30 db, or more. I n  these investigations of ambient surface- and internal- 
wave conditions, the spectra described above were obtained a t  5 f t  intervals for 
x = 5-30, and at x = 33ft. Examples of these spectra may be found in Lewis & 
Lake (1973). 

The two resistance gauges and the optical wave slope gauge were mounted on 
the wave-tank instrument carriage, and could therefore be positioned a t  any 
location along the tank simply by moving the carriage, leaving their relative 
positions unaffected. The relative gauge locations on the carriage were set so that 
all three measurements were made at the same x location in the tank. The two 
resistance gauges were mounted on the carriage on motor-driven shafts coupled 
to Selsyn position indicators, so that ' in-place ' calibrations could be performed 
by moving the gauges over a range of vertical positions. The gauges were re- 
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calibrated for each set of measurements, the surface gauge over a 0.8in. range 
centred about the air-water interface, and the internal gauge over a 1-6in. range 
centred about the two-fluid interface, with vertical displacements accurate to 
better than 0.001 in. given by the position indicators. 

The optical slope gauge was mounted on the carriage in such a way that the 
height of the gauge above the water surface a t  the location of the focal point of 
the optical system was fixed. The gauge could be rotated around a horizontal axis 
perpendicular to the x direction at the same location. It was therefore possible to 
set the gauge at a range of inclination angles over the undisturbed water surface 
in a way that was equivalent to the presence of the same range of surface slope 
angles under the gauge in its fixed operating position. This arrangement was used 
to perform 'in-place' calibration checks (over a k 2.5' range) of the detailed 
gauge calibrations described in 3 2.1. 

For each set of measurements, internal waves of fixed frequency were con- 
tinuously generated. Experiments to identify the dependence of wave inter- 
actions on relative wave speeds were performed by making measurements a t  
a fixed x location in the tank for a range of surface-wave speeds. Data samples of 
2 min were recorded for each surface-wave speed, separated by 2-4 min intervals, 
during which no surface waves were generated and the upper surface was allowed 
to return to an undisturbed state. Experiments to identify the dependence of 
wave interactions on interaction distance were performed by continuously 
generating surface waves of fixed frequency and making measurements for a 
range of carriage locations along the tank. Data samples of 2 min were recorded 
at each station at 1 f t  intervals for x = 5-33 ft. Series of experiments of each type 
were performed for two fluid density ratios and internal-wave frequencies, to  
obtain measurements identifying the dependence of wave interactions on these 
parameters as well. To ensure that the surface waves were not subjected to effects 
of surface films, the upper fluid surface was periodically skimmed clean. During 
all experiments, the output signals of the three gauges and an identifying coded 
time signal were simultaneously recorded on tape using an Ampex FR 1300 FM 
tape recorder. The gauge outputs were also visually monitored and recorded 
using an oscillograph recorder. 

The experiments were performed for the following conditions. Surface wave : 
2.18 < w < 4*45c/s, 0.29 < A, < 1.lOft. Internal wave: 0.21 < < 0*26c/s, 
3.2 < hi < 4-4ft. Fluid density ratio = 1.152, 1,288. Measurement station along 
tank: x: = 5-33ft at lft intervals (w and are wave frequency and h is the 
wavelength). Surface-wave amplitudes and slopes were of order 0.05 in. and 
2-6", respectively, Internal-wave amplitudes were 0.15-0.30 in., depending on 
the internal-wave conditions used and location along the tank (as described 
in $2.3). The ranges of the basic dimensionless parameters were therefore 
0.75 < ClC, < 1.4, 5 < Kx < 60, 4 x 10-4 < uo/C < 0.07 < hs/ht < 0.31. 
(C is the phase velocity of the internal wave, C, is the group velocity of the 
undisturbed surface wave, R is the wavenumber of the internal wave and u,, is 
the surface velocity induced by the internal wave.) The experiments were 
performed for the combinations of these conditions shown in table 1. 
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cases 

Modulations against interaction 
distance 

Modulations against relative 
wave speed 

1st case: maximum Kz  = 58 
2nd, 3rd and 4th: matched 

K% N- 43 

Density 
ratio p 

1.152 

1.152 

1.288 

l.152 

1.152 

1,152 

1.288 

n Total 
(4s) (CPS) 2 (ft) runst 

0.256 3.28 
x = 5 , 6 , 7  ,..., 33 { 28 values 

{ 28 values 0.204 2.97 

0-263 2.28 { 28 values 

0'256 { 41 values 

0.263 [ 41 values 

o'208 ( 41 values 

o'260 { 41 values 

x = 5 , 6 , 7  ,..., 33 

x = 5,  6, 7, ..., 33 

30.0 123 

22-2 123 

28.97 123 

30.85 123 

2.18 < O < 4.45 

12.18 < w < 4.45) 

2-18 < o < 4.45 

2.18 < w < 4.45 

t Each interaction condition independently reproduced and remeasured three times during experimental 
study. 

TABLE 1. Matrix of monochromatic wave interaction experiments 

2.3. Data reduction 

In  general, the data were reduced by replaying tape-recorded gauge outputs 
through analog processing equipment into a high-speed digital voltmeter and 
printer. A t  the same time, the recorded time-code signals were passed through 
a time-code reader into the printer. Two columns of printer output were produced 
at twenty samples per second, one giving the value of the measured quantity of 
interest, the other the appropriate identifying time code. 

The internal-wave-induced fractional changes in surface-wave amplitude 

A* = A m a x -  A m i n  andslope m* = m m a x - m m i n  

m m a x  + mmin A m a x  -t A m i n  

were obtained by replaying the recorded surface gauge output signals (at four 
times recording speed) through an r.m.s. meter into the voltmeter-printer 
system. The resultant voltage time histories were linearly related to the time 
history (periodic with the internal-wave period) of the magnitude of the envelope 
of the surface-wave amplitude and slope modulations. The maxima and minima 
obtained from these records over a 1 min (recording time) segment of each data 
sample were used to calculate an average value of the fractional change in ampli- 
tude and slope for each data mmple.7 Each measured value of A* and m* is 
therefore an average, over 12-15 internal-wave periods, of the surface-wave 
modulation produced by the interaction of surface and internal waves for each 

t Absolute amplitudes and slopes were calculated from typical r.m.6. voltage histories 
covering the range of experimental conditions, using the appropriate tape recorder, 
r.m.8. meter and wave gauge calibration constants. 
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set of experimental conditions. The r.m.8. deviation of the individual values from 
each calculated average was typically 2-10 %. 

Surface- and internal-wave frequencies were obtained by replaying the 
recorded gauge output signals (at eight times recording speed and thirty-two 
times recording speed, respectively) through a sensitive (62.5 mV cycle-I), linear 
frequency-to-voltage converter into the voltmeter-printer system. The resultant 
voltage time histories show that the internal-wave frequency was constant 
during each data sample period. This was also true of the surface-wave frequency, 
except that, for strong interactions, the data show sinusoidal modulations with 
amplitudes equal to several per cent of the mean level, and periods equal to the 
internal-wave periods. The mean value of the frequency was taken as the ambient 
surface-wave frequency for these cases. In  addition, the modulation data were 
used to calculate average values of 

w* = @ma, - urnin 

wmax + Omin ’ 
the fractional change in surface-wave frequency induced by wave interactions, 
in the same way that average values of A* and m* were calculated. The fractional 
change in surface wavenumber was then calculated from w* using the relation 

p = kmax-kmin - 2 w * - 3  U 
- 

hmax + kmin c*o ’ 
where the second term accounts for the surface-current-induced Doppler contri- 
bution to the measured value of us. 

The group velocity and wavelength of the surface waves were calculated using 
the measured frequency. The surface current, phase velocity and wavelength of 
the internal wave were calculated, using the measured frequency, density ratio 
and amplitude and the formulae given by Neumann & Pierson (1966). For each 
data sample, the internal-wave amplitude was obtained by averaging the internal 
resistance gauge measurements over the same sample period used to average 
A* and m*. In  addition, because dissipative effects produced a variation in 
internal-wave amplitude along the tank (and therefore a variation in the magni- 
tude of the surface current), the surface current was evaluated for each set of 
experimental conditions, using the average amplitude between x = 0 and the 
x location of the measurement station. The rate of amplitude decay for each 
internal-wave condition was obtained from the measurements of internal-wave 
amplitude at each x location along the tank. The average upstream amplitude 
was then calculated for each data sample, using the amplitude at the measure- 
ment station during that data sample and the appropriate internal-wave ampli- 
tude decay rate. For the internal waves used in these experiments, the amplitude 
variation down the tank waa well approximated by linear decay with rates of 
2-5 x 10-3in. per ft of tank length (as shown in Lewis & Lake 1973). 

The phase of the internal wave a t  which the maximum surface-wave modula- 
tion occurs has also been determined for the range of relative wave speeds. These 
results were obtained from expanded-scale oscdlograph records of the tape- 
recorded gauge output signals. In  this way, the internal-wave phase location of 
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the maximum surface-wave modulation could be determined to within approxi- 
mately f 10'. 

An oscillograph record (with horizontal scale compressed to show many 
internal-wave periods) of the gauge output signals for a nearly resonant (C/C, N 1) 
wave interaction is shown in figure 4 (plate 1). The figure shows a time history of 
measurements before and after arrival of an internal wave at the measurement 
station, to allow one to compare surface-wave conditions with and without 
internal-wave interactions. It is easily seen that the originally sinusoidal surface 
wave became modulated in time, a t  a frequency corresponding to that of the 
internal wave. Some of the surface waves were enhanced in amplitude and slope, 
others were depressed. Also shown is the output of a frequency-to-voltage con- 
verter operating on the surface-wave gauge signal, which shows the onset of 
surface-wave frequency modulations at the internal-wave frequency. These 
experimental data were used to identify the dependence of these effects on 
physical parameters, such as interaction distance Kx and the ratio of wave 
speeds C/C,. 

3. Theory 
3.1. General governing equations 

Let the surface current field caused by the internal wave be denoted by U(Z,  t ) ,  
and let it be a slowly varying function in both x and t .  The kinematic wave 
conservation equation is given by 

alilat + vo = 0, (3.1) 

where Z(E,t) denotes the surface wavenumber, and w the corresponding 
frequency. For a deep surface-wave train in the presence of a current field, 
the dispersion relation is given by 

w = (gk).t.+Z. 8. (3.2) 

Here k denotes the magnitude of 5 and g the gravitational acceleration. The 
second term in (3.2) is a Doppler effect resulting from the surface current. Sub- 
stitution of (3.2) into (3.1) yields 

ak/at+(C,+U).Vk = -k.VU, (3.3) 

where c, = t (g/k)*fr ,  ( 3 . 3 4  

denotes the group velocity of the surface wave when the surface current is absent 
and f is the unit lc vector. For a given current field U, (3.3) can be solved to 
obtain the wavenumber variation of the surface-wave train. 

To obtain information about the wave amplitude, the concept of radiation 
stress, as introduced by Longuet-Higgins & Stewart (1960, 1961), has been used. 
The energy equation for an inviscid wave train can be written as 

aE/a + v . [(U + C,) El = - s . v . u, (3.4) 
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where E is the energy density of the surface wave. In  the case of deep-water 
surface waves, the radiation stress tensor S is given by 

i.e. the only non-vanishing component of the radiation stress tensor is in the 
direction of the wave train, and equal to 3E (see e.g. Phillips 1969). As inter- 
preted by Whitham (1962), (3.4) merely states the conservation of wave energy. 
In  the case of a small-amplitude surface wave, the energy density E is propor- 
tional to the square of the wave amplitude A .  Hence, the energy conservation 
equation can be written 

(3.6) 

Because of the dependence of C, on the wavenumber k, (3.6) must be solved after 
the solutions to (3.3) are obtained. 

A general solution to the complete set of small-amplitude equations is not 
attempted here. Instead, the study has been directed toward the one-dimensional 
wave interaction corresponding to the laboratory conditions. 

3.2. One-dimensional waves 
Figure 5 shows schematically the configuration to be studied, which corresponds 
closely to the laboratory experiment. The surface-current field is generated by the 
interfacial waves of a two-fluid system with frequency i2 and phase speed C for 
t > 0. Anindependent surface-wavegenerator with frequency w is usedto produce 
for all time a single surface-wave train with wavenumber k, and unperturbed 
group velocity C,. The problem is to determine the change in the surface-wave 
characteristics as functions of both position x and time t ,  when the internal- 
wave-induced surface-current field is present. 

For these one-dimensional waves, the governing equations are further simpli- 
fied. The wave conservation equation (3.3) becomes 

ak ak au 
- + ( C g + U ) - =  at ax - k - ,  ax 

with C, = $ ( g / E ) 8  and U = U(x,t). 

The energy conservation equation (3.6) reduces to 

aA2 a au 
-+-[(Cg+U)A2] = --QA2- at ax ax 

which can be written in the alternative form 

aA2 8A2 au ac, -+(C,+ U ) -  = -QA2--A2-. 
at ax ax ax 

(3.7) 

(3.9) 
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Laboratory case k 
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HIGURE 5 .  (a) Schematic problem definition for laboratory experiment. ( b )  Schematic dia- 
gram of wave tank and estimate of surface current amplitude near wave makers. 
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Both (3.7) and (3.8) are written in a characteristic form for which the soIution 
can be readily obtained. These characteristics are defined by 

ax -& = cg+ u, 

along which the two governing equations reduce to 

and 

(3.10) 

(3.11) 

(3.12) 

I n  other words, in the characteristic co-ordinate system defined by integrating 
(3.10) such that 

x = x(r,,g), t = 7, (3.13) 

where 6 = constant denotes a characteristic, the governing equations (3.11) and 
(3.12) become 

(3.14) 

These equations can be integrated numerically along each characteristic with the 
initial conditions prescribed along any non-characteristic line. For example, 
since there is no internal-wave field for t c 0, the initial conditions for the surface 
waves can be selected along the t = 0 line. Thus, 

x = x,([), k = k,, A = A,. (3.16) 

3.3. Laboratory simulation 
The schematic of figure 5 ( a )  is a mathematical idealization of the realistic 
condition that assumes that both the surface wave and the internal wave are 
monochromatically generated at  x = 0. As shown in the x, t diagram, the surface 
wave is considered to be generated at all times, but the internal wave only exists 
for t > 0. Therefore, in the x, t diagram, a non-vanishing surface current exists 
only in the region bounded by the t axis and the internal-wave front x = Ct. 
Assuming that there is no variation of the internal-wave amplitude with x, the 
surface current field can be represented as 

U = u,s inK(x-Ct)H(x)H(t-x/C),  (3.17) 

where H ( x )  represents the Heaviside function such that 

1, x > 0) 
H ( x )  = Q, x = 0, 1 0, x < 0. 

The introduction of the Heaviside function is primarily for convenience in 
carrying out the analysis. However, because of the inherent slowly varying 

50 F L M  63 
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assumption implicit in the governing equations, this idealization must be 
justified, to ensure the correctness of the solution. 

First, the real situation near the surface-wave maker must be analysed. 
Referring to figure 5 (b ) ,  the magnitude of the surface current I Ul induced by the 
interfacial wave generated a t  x = 0 approaches the designed value u, at ‘large’ 
positive x. Because of the physical constraint of the surface-wave maker, the 
magnitude of the surface current at x = 0 must be near zero at the surface, but 
increases with depth to  nearly the designed value in about one surface wavelength. 
Within the present depth-independent current assumption, an exact determina- 
tion of the surface-current magnitude near x = 0 is difficult t o  make for the 
purpose of theoretical calculation. On the other hand, I UI must vanish far to the 
left of the interfacial-wave generator, Therefore, a reasonably smooth surface- 
current field near the origin can be assumed as indicated in figure 5 ( b ) .  For the 
purposes of demonstration, we assume 

lUl = +u,,[l+tanh(x/A)]. (3.18) 

For A 9 A,, the slowly varying assumption can be justified. On the other hand, 
for A < A,, the solution to the problem of interest is relatively insensitive to the 
actual value of A when the absolute magnitude of u, is small. Numerical solutions 
of the equations using (3.18) with reasonable estimates for A have clearly demon- 
strated this insensitivity. Since (3.18) tends to the assumed surface-current field 
as A approaches zero, the use of a Heaviside function a t  x = 0 is justified in this 
sense. A similar argument can also be used near the internal-wave front x = Ct. 

It should be noted that by using the Heaviside function as an approximation 
for the variation of the surface current the surface-wave conditions at x = Of can 
be readily understood. Physically, the surface-wave maker is being driven by a 
motor a t  a given frequency and fixed stroke, When there is no surface current, 
the generated surface waves are characterized by k, and A,. This situation 
changes when a surface current is present and the values of k and A at z = O+ are 
slightly different from k, and A ,  (which are presumed to exist for x < 0 in the 
present problem). The Heaviside function accounts for this slight jump in 
‘initial’ conditions from x = 0- to  x = O+. 

With (3.17) or (3.18)’ (3.10), (3.14) and (3.15) can beintegratednumerically to 
obtain solutions in the form of 

k = k(x, t )  and A2 = A ~ ( x ,  t ) .  

Instead, the first-order perturbation solutions of this set of equations are obtained 
in a closed form in Q 3.4. With the solution given in an analytical form, features 
of the solution can be readily studied in great detail and the effects of the inter- 
action phenomena can be displayed in a more explicit form. 

3.4. Perturbation solutions 

To simplify the analysis further, it  is assumed that the magnitude of the surface 
current u, is small compared with the minimum of the group velocity for surface 
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f t  s-l. waves. For example, in the laboratory experiment uo is the order of 
Therefore, it is adequate to assume that 

uo/c, = 6 < 1, 

where C, = +(g/ko)*, the unperturbed group velocity. Now, assume that the 
solutions can be represented by the following perturbation series in E : 

x = z,+6x1+E2x2+..., 
Ink = Ink,+eInk,+e21nk2+ ..., 

lnA2 = InA; + Eln A2, + 81n A; + . . . , 
c, = c,, + €CUl + €",, + . . . , (3.19) 

where C,, = - &',,.In k,. 

same order in E, one obtains for O(@) 
Substituting (3.19) into (3.10), (3.14) and (3.15), and grouping terms of the 

(3.20) 

These equations describe the unperturbed surface-wave field, which is assumed 
to be a uniformly generated monochromatic wave train. Therefore, integration 
of (3.20) gives 

k, = const., A: = const., x, = Coo(r-~), (3.20 a) 

where 5 denotes the intersection of the characteristic with the t axis. 
For O(s) the governing equations become 

alnk 
a7 

E -l= - uo[K cosK(xO - Ct)H(x,)  H(t - xo/C) + sinK(z, - Ct) S(rc,) H(t  - xo/C) 

-C-lsinK(x,- Ct)H(x,)d(t-x,/C)], (3.21) 

and 

(3.22) 

(3.23) 

where E In k, and E In A; represent the first-order change of the wavenumber and 
the square of the amplitude, while EX, gives the deviation from the unperturbed 
characteristic. 

Using the zeroth-order characteristic, one obtains 

x,-Ct = (C,-C)T-C,[. (3.24) 

Then the equations can be integrated from r = 0 to r along a given characteristic 
= const. The solution to (3.21) should first be obtained, then used on the right- 

hand side of (3.22) and (3.23).  Because of the appearance of the Heaviside 
functions the integration is lengthy, but it is straightforward. The solution for the 
wavenumber is given by 

sin ~ ( x ,  - ~ t )  H(t - X,/C) 
Ic 

elnk, = In- = -- k, c,-c 
H(t-x,/C,,,)}, (3.25) 

50-2 
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C 
sin K(x,  - Ct) H(t  - xo/C) - - A 

Q*O 

In- = _ _  - 
A ,  4cg0-c 

(3.26) 

For k = k, +Ah, and A = A,+ AA, the right-hand sides of (3.25) and (3.26) give 
the changes in wavenumber (Ak/k,) ,  and wave amplitude (AA/Ao), respectively, 
for small changes. In  practice, we are also interested in the change of the local 
surface-wave slope m, which is simply related to the changes in wavenumber and 
amplitude by 

m k A  
In- = In-+ln--, 

mo ko A0 
or for small variations by 

Am AA Ak -- - -+-. 
mo A ,  ko 

(3.27) 

(3.27 a )  

It is also interesting to calculate the maximum changes in the surface- 
wavenumber, the amplitude and the slope at  a given x station, as well as the 
corresponding phase of the internal-wave current where the maximum effect 
occurs. For the region where both Heaviside functions in (3.25) and (3.26) are 
equal t,o one, it is appropriate to drop the Heaviside function notation. Further- 
more, define 

(3.28) 

with B Kx,( 1 - C/C,,). 

Then ( 3 . 2 5 ) ,  ( 3 . 2 6 )  and ( 3 . 2 7 )  can be rewritten as 

m 1 u  
and l n - = - - ~  

m, 4CN-C 

For a given x, and C/Cg,, the maximum or minimum change occurs at  
the phase of the internal wave, where a/ay5( ) = 0. The quantity inside 

$*, 
the 
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parentheses can be any one of the three quantities given on the left of (3.29). 
The result of performing the indicated differentiations gives 

C,lC - cos B $;c* = tan-1 ( 3 . 3 0 ~ )  

3 + % - 2  [ ( 4 + s c ) c o s B + - K x o s i n B  C 

1 % C [ ( 4 + e c )  sinB-%Xz0cosB C 

7 +A -2 [ (8 +A) cos B + -Kxosin C 

1 

coo - c CgO C,O ’) , (3.30b) 

c,-c c, c,-c c, ’1. ( 3 . 3 0 ~ )  
C 

B 

$2 = tan-1 

[ (8 ++c) sinB - c , , ~ x o  c o s ~  

and 

4; = tan-1 

The corresponding maximum or minimum values are obtained by substituting 
(3.30) into (3.29). 

Since the solutions (3.26) and (3.26) appear to be inversely proportional to 
C - C,, a singular behaviour may seem to be probable at resonance. However, 
with a proper limiting procedure, it can be shown that, for C,, + C, we have 

k u  
k, c ln- = -”H(x)H [sinK(x-Ct)+KxcosK(z-Ct)] (3.31) 

and 

(3.32) 

A U 
In - = - 3 H ( x )  H [ (4 - +K2x2) sin K(x - Ct) + 5Kx cos K ( x  - Ct)], 

A, 4C 

where the subscript zero on x has been dropped, for convenience. Notice the 
strong dependence of the solutions on Kx, which effectively measures the distance 
or ‘time’ of interaction. Further, in the present model, the energy transfers only 
from the internal wave to the surface wave, and there is no provision to account 
for the limited energy available in the interval wave. Without considering the 
other nonlinear effects and the energy loss of the internal-wave train, the 
linearized solutions for the resonant case predict a monotonic increase of the 
effects with distance as shown by (3.31) and (3.32). 

4. Results 
The figures presented in $4 show results of the experiments as data points 

together with solid curves obtained from the present theory for the conditions 
of the experiments. The experimental and theoretical results both indicate that 
internal-wave-induced modulations of surface-wave amplitudes and slopes are 
largest when the internal-wave phase speed C and the group velocity of the 
undisturbed surface waves C,, are equal (the ‘resonant’ condition). Figure 6 
shows results from surface-wave slope modulation measurements as a function 
of x for a wave interaction configuration fixed near resonance (C/C,, 1) .  A series 
of experiments of this type has been performed in which surface-wave amplitude 
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FIGURE 6. Surface-wave slope modulation against interaction distance ClC,,, 2: I .  p = 1.152, 
Ti = 3.9 S, k = 1.92 ft-l, c = 0.84 ft  s-I, Tio = 6-06 x lo4 ft S-'. 

and slope modulations have been measured as functions of the interaction distance 
x for configurations all of which are near resonance (C/O,, = 1.00 & 2 yo). The 
interaction configurations are shown in table 1, and individual plots of the slope 
and amplitude modulations measured for each configuration are shown in Lewis & 
Lake (1973). The results shown in figure 6 are typical of the results of all such 
measurements, showing a good agreement with the present theory in magnitude 
and dependence on interaction distance for each configuration. The results of all 
amplitude and slope modulation measurements for these resonant interaction 
configurations are discussed further and presented in two composite plots in 0 5. 

The results of a, second series of experiments demonstrate the dependence of 
internal-wave-induced surface-wave modulations on the relative wave speed 
ClC,,. As described in § 2, these data were obtained by fixing the internal-wave 
conditions and the interaction distance and varying the surface-wave speed. 
Experiments of this type were performed for four different combinations of 
internal-wave conditions and interaction distances (as shown in table 1). 
Individual plots of the modulations measured for each combination of inter- 
action conditions can be found in Lewis & Lake (1973). Figures 7 and 8 show sets 
of data from experiments of this type and are typical of the results obtained from 
all such experiments. All show good, agreement with the present theory. In  
figure 7 the measured dependence of surface-wave slope modulations on relative 
wave speed is shown for two different interaction configurations. Comparison of 
the values of density ratio, internal wavenumber, internal-wave period and 
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Wave slope modulation 

0 0  Theory 

surface current for the two sets of results shows that all are closely matched, and 
therefore the modulation data in the two cases correspond to the same surface- 
wavelinternal-wave interaction measured at two different interaction distances. 
In  each case the results show that the maximum surface-wave slope modulations 
occur at  ‘resonance ’ where the wave speeds are matched, C/C,, = 1. Comparison 
of the two sets of results shows further that, as the interaction distance increases, 
the magnitudes of the modulations at  resonance increase (as found also in the 
resonant case measurements of figure 6), and the variation of modulation magni- 
tudes with relative wave speed becomes increasingly ‘narrow band ’ (i.e. the range 
of relative wave speeds for which modulation magnitudes are near the maximum 
or ‘resonant ’ value decreases with increasing interaction distance). This effect 
is also predicted by the theory, which further predicts (KO 1972) that, for relative 
wave speeds far from resonance, the dependence of the magnitude of the modu- 
lations on Kx is actually non-monotonic owing to destructive interference. 

Figure 8 also shows results of surface-wave slope modulation measurements 



7 92 J. E. Lewis, B. 31. Lake and D.  R. 8. KO 

0 ooo 
0 

0.30 

Wave slope modulation 
?It* 

‘heory 

0.6 0.7 0.8 0.9 1 .o 1.1 1.2 I .3 1.4 

Relative wave speed, C/O,, 

FIGURE 8. Surface-wave slope modulation against relative wave speed, two different 
interaction configurations with ‘matched’ values of Kx 

P T, (9) K (ft-I) x (R) uo (ft s-1) Kx 
0 1.152 3- 8 1-97 22.2 5.89 x 10“‘ 43-8 
0 1.152 4.8 1.48 29.0 1.03 x 10-8 42.8 

for two different interaction configurations. In  figure 8, however, the internal- 
wave conditions as well as the interaction distances are different for the two cases. 
Only the values of the interaction distance measured in internal wavelengths Kx 
are nearly equal in the two cases. Data from experiments of this type, in which 
niodulations are measured against relative wave speed under different internal- 
wave conditions and different interaction distances, but with matched values of 
Ex, are used in 5 5 to demonstrate that, by proper normalization, widely different 
modulation results can be reduced to a single form for slope and for amplitude. 

The use of sensitive frequency-to-voltage converters has made possible the 
measurement of the small internal-wave-induced surface-wave frequency modu- 
lations, from which the surface wavenumber modulations can be obtained. The 
results of these measurements are shown in figure 9 for a series of experiments 
performed at  fixed Kx = 58, in which measurements were made for a range of 
relative wave speeds. Although the wavenumber modulations were larger in this 
series of experiments than in any of the others, the actual magnitudes are still 
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FIGURE 9. Surface-wavenumber modulation against relative wave speed for Kx = 58, 
p = 1.152, Ti = 3.9 S, K = 1.93 ft-l, z = 30 ft, u,, = 5.64 x lo-" ft S-'. 

0 0 
0 

I I 

Phase of internal wave, $ 

FIGTJRE 10. Phase location of maximum surface-wave slope 
modulation for Kx = 42.8. 
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Phase of internal wave, 6 
FIGURE 11. Effect of interaction ‘distance’ Kx on phase of internal wave where maximum 
slope and amplitude modulations occur for ‘resonant’ interactions. C/C,, E 1. O,#* at 

; x , #* at  A L .  

quite small, and accurate measurements are not possible over as wide a range of 
relative wave speed as is possible for slope or amplitude modulations. Neverthe- 
less, the data are in good agreement in magnitude, and to some extent in variation 
with relative wave speed, with the predictions of the theory. The experimental 
confirmation of the small magnitude (4 yo or less for these experiments, corre- 
sponding to ACJC, 6 2 yo) of the wavenumber modulations, and therefore the 
group velocity modulations, produced by the wave interactions is of particular 
interest, since it is the latter condition on which the linearization in the anaIysis 
depends. 

The phase of the internal wave at which maximum surface-wave modulation 
occurs has also been obtained from the experimental measurements. Figure 10 
shows the internal-wave phase location of maximum surface-wave slope modula- 
tion for Kx = 42.8. The data clearly show that the phase location of the maximum 
surface effect is a continuous and sensitive function of the relative speed of the 
internal and surface waves. Although the data have been obtained from oscillo- 
graph records and could be determined only to within approximately & loo, the 
experimental and analytical results agree well in magnitude and rate of change 
of phase angle with relative wave speed in the range 0.9 S ClC, 5 1.1, where the 
data are most reliable. 

The measurements can also be used to describe the variation in the internal- 
wave phase location of maximum surface-wave slope and amplitude modulations 
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with interaction distance Kx, for interactions at fixed relative wave speed. As 
shown in figure 11 , the theory predicts that these phase locations asymptotically 
approach the internal-wave crest, $ = &, from values of $ > in as Kx increases 
for resonant interactions. The experimental data for interaction conditions at or 
near resonance over a range of interaction distances from Kx = 21 to Kx = 63 
are also shownin the figure. The data confirm that the phaselocation of maximum 
surface-wave slope and amplitude modulations approaches that of the interval- 
wave crest as Kx increases for resonant interactions. 

5. Discussion 
The experimentalresultsdemonstrate that for the ‘resonant ’ case, surface-wave 

slope and amplitude modulations produced by internal-wave interactions with 
monochromatic surface waves increase monotonically with increased interaction 
distance. For fixed interaction distance, the variation in modulation magnitudes 
with relative wave speed is such that the maximum effect occurs at ‘resonance’, 
where the internal-wave phase speed and surface-wave group velocity are 
matched, and modulation magnitudes descrease rapidly as the relative wave 
speed diverges from the matched condition C/C,, = 1. The decrease in modulation 
magnitudes as the relative wave speed diverges from C/C, = 1 is more rapid for 
C&, < 1 (surface-wave groups outrunning internal waves) than for C/Cg, > 1 
(internal waves outrunning surface-wave groups). As the interaction distance Kx 
increases, the variation of surface-wave modulation magnitudes with relative 
wave speed becomes increasingly ‘narrow band’, with maximum effects concen- 
trated within a progressively narrower range of relative wave speeds centred 
around the ‘resonant ’ condition. Surface-wave slope and amplitude modulations 
as large as 30 yo have been measured and the experimental results are in good 
agreement with the theoretical predictions. At first, it  may seem surprising that 
a ‘linearized’ theory can be valid with such large distortions. The explanation 
comes from the fact that the term ‘linearization’ is used in a somewhat different 
context for the present analysis. A simple observation of the system of equations 
displays the fact that the closed form solutions given by (3.25) and (3.26) are a 
result of linearizing about the unperturbed characteristic slope C,. There is no 
further limitation on the changes in wave amplitude and slope provided that the 
dispersion relation (3.2) is still valid. This linearization about the characteristic 
slope implies that both uo/C, and ACg/Cg, are much less than one. Since 
u,/C, - 0(0-1%), the main error in the linearization is introduced through the 
term ACJC,. The maximum value of the term AC,/C,, (which is half of the change 
in wavenumber) over the experimental range of x stations satisfies AC,/C,, 5 2 %, 
which is well within the applicability of this linearization. The corresponding 
surface wavenumber modulations were measured and found to be < 4 yo, also in 
agreement with the predictions of the theory. Measurements of the phase of the 
internal wave at which maximum surface-wave modulation occurs demonstrate 
that the phase location is a sensitive and continuous function of the relative 
wave speeds. For ‘resonant ’ interactions, the internal-wave phase locations of 
the maximum surface-wave slope and amplitude modulations approach (p = Qn, 
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FIGURE 12. Normalized slope modulation against interaction ‘distance’ Kx. ClC,, N 1. 
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FIGURE 13. Normalized amplitude modulation against interaction ‘distance ’ Kx. C/C,, N 1, 
Symbols as in figure 12. 
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the location of the internal-wave crest, from locations at 4 > in as the interaction 
distance Kx increases. 

Inspection of the analytical expressions for slope and amplitude modulations 
reveals that, when normalized by the ratio of induced surface current to internal- 
wave phase speed u,/C, the ‘resonant ’ case modulation magnitudes are dependent 
only on the interaction ‘distance’ Kx, and are independent of the magnitudes of 
the physical parameters in the problem, such as density ratio or internal-wave 
period or amplitude. Figures 12 and 13 show the results of applying this normaliza- 
tion to the experimental data. They include results from experiments at different 
density ratios and internal-wave periods, and therefore a t  different internal-wave 
decay rates, surface-current magnitudes, internal wavelengths and internal-wave 
phase speeds. Also shown in each figure is the normalized general result for 
resonant interactions obtained from the theory. The normalized experimental 
results describe single curves for normalized slope and amplitude modulations as 
functions of Kx, and agree with the normalized analytical results, confirming that 
the effects of the physical variables in the problem are properly accounted for 
when ‘resonant’ case wave interaction effects are expressed in this general form. 
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FIGURE 15. Normalized amplitude modulation against relative wave speed. .Ks u 43. 
Symbols as in figure 14. 

The same normalization can be used to express the dependence of surface-wave 
modulations on relative wave speed in a general form independent of specific 
physical variables, as long as conditions are such that the interaction ‘distance ’ 
Kx is fixed. This can be seen from figures 14 and 15, where experimental data 
from three very different interaction configurations are plotted in normalized 
form and compared with the normalized analytical results for slope and amplitude 
modulations versus relative wave speed at  Kx = 43. The experimental data were 
from experiments performed under several different internal-wave conditions 
(density ratio, wave period, etc.) and interaction distances in combinations such 
that values of Kx were matched (actual values were 43.8, 42.8 and 42.9). For 
example, two of the sets of data in figure 14 are those shown before normalization 
in figure 8. Figures 14 and 15 show that, when the normalized modulation data 
are plotted against relative wave speed for these sets of matched Kx experiments, 
the data describe a single curve with experimenta1 scatter no greater than in the 
individual sets alone, and the results agree well with the normalized analytical 
results. In  this case, as in the ‘resonant’ case, evaluation of the experimental 
results using this more general normalized form demonstrates that the various 
experimental results are self-consistent, that the experimental and theoretical 
results are in good agreement, and that the influence of the physical variables on 
surface-wave modulations produced by internal-wave interactions with mono- 
chromatic surface waves has been correctly identified. 
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6. Conclusions 
Experiments were performed in which the effects of one-dimensional internal- 

wave interactions with linear monochromatic surface gravity waves were mea- 
sured. The interactions produce surface-wave amplitude and slope modulations 
that are sinusoidal and have the frequency of the internal wave. The magnitude of 
the modulations depends strongly on the relative wave speeds, and is a maximum 
when the phase speed of the internal wave C and the group velocity of the surface 
wave C, are matched (the ‘resonant’ condition). The magnitude increases 
monotonically with increased internal-wave induced surface current, and, for 
conditions at or near resonance, with increased interaction ‘distance ’ or inter- 
action ‘ time’ as measured by Kx. As Kx increases, the variation of surface-wave 
modulation magnitudes with relative wave speed becomes concentrated within a 
progressively narrower range of relative wave speeds centred around the resonant 
condition. Surface-wave amplitude and slope changes of more than 30 % were 
measured in the experiments. For the same conditions, measured surface 
wavenumber changes were less than 4 %, corresponding to changes in surface- 
wave group velocity of less than 2 %. The phase of the internal wave at which 
maximum surface-wave modulation occurs was measured, and was found to be 
a sensitive and continuous function of the relative wave speeds. 

A closed form linearized solution to the wave and energy oonservation equations 
was obtained. The experimental results are in good agreement with the present 
theory. Normalization of slope and amplitude modulation data reduced results 
of measurements made under differing interaction conditions (for which either 
C/C, = 1 or K z  = const. was maintained) to more general forms, further 
demonstrating the agreement between experiment and theory. 
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FIGURE 4. Oscillograph records, showing onset of interaction of 
internal wave with surface wave. 
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